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Most studies on melting under confinement focus only on the solid and liquid melt phases. Despite of its
ubiquity, contributions from the capillary interface (liquid / vapor interface) are often neglected. In this study
the melting behavior of small cylindrical aggregates in vapor attached to planar surfaces is analyzed. For
the assumed boundary conditions (cylindrical solid with a non wetting top plane and a wettable side wall)
solid and the liquid phases can coexist within a certain temperature range. Due to capillary instability, the
liquid phase can form either an axisymmetric rouloid morphology or, above a certain threshold liquid volume
fraction, a bulge coexisting with a rouloid-like section. The corresponding melting points are different. The
analysis explicitly describes the behavior of a real system of small aggregates of long chain alkanes on planar
substrates. It also gives qualitative insights into the melting behavior of small aggregates with anisotropic
wetting behaviors in general. It reveals in particular how melting points and melting pathways depend on
the energetic respectively morphological pathways leading to complete melting.

PACS numbers: 36.40.Ei, 64.70.dj, 68.08.Bc

I. INTRODUCTION

The thermodynamics of reduced dimensions (small
particles, confined materials, etc.) is of interest in funda-
mental and applied research. For instance, the melting
behavior depends on the system size and shape1–3, re-
sulting from the competition between the changes of the
bulk energies and the changes of the interfacial energies
that evolve during the phase transition.

In simple, highly symmetrical cases with isotropic in-
terfacial energies the phase transition can be described by
a Gibbs-Thomson effect (GT)4–7, which is widely used
by experimentalists and engineers8–13. A similar ap-
proach has been used to describe nucleation phenomena
or the solubility of small particles14–16. Its extension, the
Gibbs-Thomson-Herring approach (GTH) takes into ac-
count anisotropic interfacial energies between mother and
daughter phase17,18. Thus it can be applied for instance
to analyze the melting of small faceted solid aggregates
embedded in an infinite bulk volume of its melt.

Rarely analyzed yet is the melting behavior of small
anisotropic systems including a capillary interface i.e.,
the liquid/vapor interface. In this case energetic con-
tributions from two interfaces affect the melting behav-
ior. During melting the area and the geometry of the
solid/liquid interface, as well as the “capillary” interface
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between the two fluids (liquid and vapor) evolve on a
path given by the minimization of the interfacial and the
bulk energies of the entire system.

Here we analyze the melting behavior of small cylin-
drical aggregates in a gaseous environment. We show
that their melting scenarios include morphological tran-
sitions of the capillary interface, which have an impact on
the melting paths and on the melting points. The anal-
ysis is motivated by experiments with cylinder-like ag-
gregates of long chain alkanes on planar interfaces19 and
by an earlier theoretical analysis on straight terraces20.
Cylindrical aggregates can be found in micro- and nano-
manufacturing, e. g., the epitaxial growth of nano-
wires21, or the 3D printing of small structures22. Our
basic assumption that the solid core always retains the
shape of a right cylinder may hold only for a few real sys-
tems. Yet, the aim of this article is to explore the general
aspects of the melting behavior of small, anisotropic sys-
tems, with a focus on the impact of the morphology of
the capillary interface on the melting behavior.

II. THEORY AND SIMULATION DETAILS

A. General theoretical approach

We analyze the solid/liquid phase transition in a con-
tinuum approach scenario23. Contributions from line
tension24, disjoining pressure25 and gravity are neglected.
The total free energy of the system, Gtotal = GB + GI,
is the sum of energy contributions from the bulk, GB
and from all interfaces, GI. The chemical potential per
unit volume of the liquid (l) and solid (s) phases26 at
temperature T and pressure p is dGB/dV = ∆µ with
∆µ = µl(T, p)− µs(T, p).

The system is assumed in thermodynamic equilibrium
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FIG. 1. Cross-section through a solid core of right cylindrical
geometry sandwiched between two parallel substrates. The
cylinder sidewall is completely wetted by liquid melt. The
different cartoons show the result of various wettabilities of
the substrate surfaces by the melt.

with dGtotal/dVl = 0:

∆µ+ dGI

dVl
= 0 (1)

∆µ ' −Sm · (T − T0) is approximated with a constant
melting entropy Sm (the relevant temperature range is
very small)27,28. T0 is the bulk melting temperature.
This approximation of ∆µ together with eq. (1) defines
an ”equilibrium” temperature if dGI/dVl < 0. In this
case the system is in a metastable state with a certain
fixed amount of solid and liquid coexisting:

∆Teq = Teq − T0 = 1
Sm
· (dGI

dVl
) (2)

The upper limit of Teq i.e., the maximum change of
the interfacial energy caused by an infinitesimal volume
change, (dGI/dVl)max, is

∆Tm = Tm − T0 = 1
Sm
· (dGI

dVl
)max (3)

This Tm presents the highest possible equilibrium tem-
perature. At Tm the system can start to melt completely
without having to overcome an energy barrier. Tm is the
“de facto”29 melting temperature of the system.

Let us analyze the melting behavior of aggregates with
cylindrical shapes as depicted in fig. 1. We assume that:

1.) the solid maintains a smooth, right cylinder geom-
etry with a constant height h;

2.) the total volume of solid and liquid phase together
remains constant30;

3.) the substrates are planar;
4.) the cylinder side walls are completely wetted by

the liquid;

5.) the top and bottom base planes of the solid cylinder
are not wetted by the liquid;

6.) Young’s equation holds for contact angles at the
liquid/substrate/vapor contact lines.

The upper schematic of fig. 1 shows such a system in
the situation of solid/liquid coexistence for the most gen-
eral case in agreement with these assumptions. The three
schematics below show more specific cases. In the all-
solid state the round top and bottom planes of the solid
cylinders have radii r0. If some solid has been transferred
into the liquid state the radius of the solid cylinder core
is r.

In case (a) the contact angles of the solid and the
liquid phase with the substrates are exactly 90◦. This
case represents a Gibbs-Thomson (”GT cylinder”) ap-
proximation for the melting of a cylindrical solid aggre-
gate i. e., the melting is affected only by the competi-
tion between the energies of the bulk phases and of the
solid/liquid interface4–7. The melting is not influenced
by the contact of the liquid and solid with the top and
bottom substrate, it is independent from h.

Cases (b) (”Cylinder island”) and (c) (”Floating
cylinder”) assume that the liquid is ”pinned” at the
solid/vapor/liquid contact line of the top cylinder plane.
Pinning means that there is no fixed contact angle at this
line. The contact angle adjusts itself such that the sum of
the interfacial energies of the interfaces (i. e., their geom-
etry), is minimised. In case (b) the cylinder is deposited
on a substrate. In case (c) top and bottom planes of the
solid cylinder are both in contact with the surrounding
vapor phase. Case (c) represents a special case (b). A
floating cylinder can be divided into two identical cylin-
der islands (dividing plane indicated by the dashed line).
Each of these two cylinder islands has on one base plane
side a contact angle of Θlv2 = 90◦. On the other base
plane side the liquid is pinned at the base plane perime-
ter. Case (c) with height h is identical to case (b) with
height h/2 and Θlv2 = 90◦.

In the most general cylinder case (upper schematic of
fig. 1), the sum of all interfacial energies is:

GI = (γs1 − γv1)As1 + (γs2 − γv2)As2

+ (γl1 − γv1)Al1 + (γl2 − γv2)Al2 + γlsAls + γlvAlv
(4)

With assumption #1 (As1 = As2 = πr2) this means:

GI = (γs1 − γv1 + γs2 − γv2)πr2

+ (γl1 − γv1)Al1 + (γl2 − γv2)Al2 + γlsAls + γlvAlv

GI = (γs1 − γv1 + γs2 − γv2)πr2

+GI(liquid) (5)

GI(liquid) summarises all the energy contributions
from interfaces of the liquid phase with its environments.
Assumption #2 (Vl = πh(r2

0 − r2)) for eq. (5) yields:

dGI

dVl
= dGI(liquid)

dVl
− 1
h

(γs1 − γv1 + γs2 − γv2) (6)



3

(a) rouloid

(b) bulge

FIG. 2. The two possible morphologies of the liquid/vapor
interface. It is assumed that the solid retains a right cylinder
shape and that the liquid wets the substrates as depicted in
fig. 1(b) (”cylinder islands”).

And with eq. (2) we obtain:

∆Teq = 1
Sm

[
(dGI(liquid)

dVl
)− (γs1 − γv1 + γs2 − γv2)

h

]
(7)

With eq. (7) the shift of the equilibrium temperature
(and also of the “de facto” melting temperature, Tm) is
determined by (a) the (geometry) evolution of the in-
terface(s) between the liquid phase and its various envi-
ronments (first term on the right side) and (b) an offset
given by the interfacial energies of the solid top and bot-
tom planes scaled to the height of the cylinder (second
term).

In the following we will focus on the behavior of a
cylinder island as depicted in fig. 1(b) (see Appendix for
cases (a) and (c)). For the cylinder island eq. (6) reads
as:

dGisland
I
dVl

= dGI(liquid)
dVl

− 1
h

(γsv + γsw − γvw) (8)

and thus:

∆T island
eq = 1

Sm

[
(dGI(liquid)

dVl
)− (γsv + γsw − γvw)

h

]
(9)

B. The basic metastable solid/liquid coexistence
configurations: Rouloids and bulged morphologies

Eq (9) was solved by numerical simulations with Sur-
face Evolver31 for various cylinder shapes r0/h. For the
simulations real data of typical long-chain alkane sys-
tems are assumed with γlv = 25 × 10−3N/m, γlw =
4 × 10−3N/m, γls(cylinder side wall) = 10 × 10−3N/m,
γls(cylinder base plane) = 4 × 10−3N/m, and ∆S =
qm/Tm = 5 × 105 J/Km−332–34. The contact angle is
θlvw = 15◦. The results can be compared to the observed
melting scenarios of round multilayer islands of long
chain alkanes on planar surfaces35–37 (see Appendix).

The simulations reveal that liquid and solid can co-
exist in a metastable state within a certain tempera-
ture range. Within this liquid/solid coexistence regime,

for certain temperature ranges, two distinctly differ-
ent, isochoric types of morphologies are possible (fig. 2).
Both morphologies have isocurvature liquid/vapor in-
terfaces, assuring isobaric conditions (mechanical equi-
librium) for the liquid phase. One type of morphol-
ogy are rouloids (axisymmetric channels) as studied by
Delaunay38,39 (fig. 2(a). Such rouloids are the typi-
cal shapes of capillary bridges of liquids confined be-
tween planar substrates40–42. The other type of morphol-
ogy are bulged liquid/vapor interface sections in isobaric
(isocurvature) coexistence with rouloid-like channel sec-
tions (fig. 2(b). Such bulges have been reported before in
the case of wetting of planar patterned surfaces by liquid
stripes43–45 and for the melting behavior of terraces with
straight edges20. There are temperature ranges, where
rouloids or bulged morphologies are possible and there
are ranges (below Tm), where only rouloids are possible.
Which morphology is possible depends on

1.) r0/h, the shape of the cylinder in its all-solid state
2.) the (non) wetting properties of the substrate, and
3.) the volume fraction of the liquid melt.

III. RESULT AND DISCUSSION

A. The melting scenarios

Fig. 3(a) shows dGI/dVl = dGI/dVl · h/γlv as func-
tion of the liquid volume fraction in the total material
volume, Vl (= Vl/πr

2
0h). Because dGI/dVl ∝ Teq − T0

(Eq. (2)), the plot explicitly reveals the difference be-
tween the (metastable) equilibrium temperatures of the
system and the bulk melting temperature. The bulk
melting point, T0, is at dGI/dVl = 0. Data are shown
for ”low” (r0/h = 500) and ”tall” (r0/h = 10) islands
for rouloid and for bulged morphologies. For the rouloid
morphology, for both island shapes, starting from well
below 0, dGI/dV first increases steeply with increasing
VI. Eventually dGI/dV reaches a maximum. This cor-
responds to Tm(rouloid) (Eq. (3)). Beyond Tm(rouloid)
dGI/dV continuously decreases with increasing VI. For
the bulged morphology dGI/dVl is depicted by the lines
connecting the (simulation) data points of the full trian-
gles. In contrast to dGI/dV (rouloid), there is a non-zero
lower volume limit for dGI/dV (bulge). Below this lim-
iting volume bulged morphologies are not possible (be-
cause there is not enough liquid to form a bulge in co-
existence with a channel section with the same surface
curvature). As dGI/dVl(bulge) decreases monotonically,
this lower volume limit also corresponds to the de facto
melting points, Tm(bulge). For r0/h = 500, Tm(bulge) is
smaller than Tm(rouloid). Also, dGI/dVl(bulge) remains
smaller than dGI/dVl(rouloid) between Tm(bulge) and a
cross-over point at rather large values of VI. Tm(rouloid)
and Tm(bulge) are both above the bulk melting point,
T0.

For the tall island with r0/h = 10, dGI/dV (bulge) also
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FIG. 3. Melting scenarios of cylindrical islands on a planar
substrate with wetting conditions as in fig. 1(b). The data
result from simulations assuming the thermodynamic data of
islands of long-chain alkanes. (a) dGI/dVl(= dGI/dVl · h/γlv)
as a function of the liquid volume fraction in the total volume,
Vl(= Vl/πr

2
0h). The behavior of the rouloids and the bulged

shape (dGI/dVl) are depicted by the dotted lines and filled
triangles respectively. Please note that dGI/dVl ∝ Teq − T0.
Tm(rouloid) and Tm(bulge) indicate the de facto melting tem-
peratures of the corresponding morphology. At Tinst rouloids
can form bulged shape without energy barrier (see fig. 4). (b)
PL(= PL · h/γlv) as a function of the liquid volume fraction
for rouloids(solid lines) and the bulged morphology (empty
triangles). The endpoint of the red arrows indicate the isoth-
ernal Laplace pressures for the two island shapes for rouloid
geometries (for T corresponding to dGI/dV = −0.06).

has a lower volume limit, indicated by Tm(bulge). This
Tm(bulge) is not a melting temperature, because it is on
the downhill branch of dGI/dV (rouloid) and the island
is already melting irreversibly in a rouloid shape.

Fig. 3(b) shows a scaled Laplace pressure, PL = PL ·
h/γlv, as function of Vl (= Vl/πr

2
0h) and again dGI/dVl

as in Fig. 3(a). PL is depicted for low and tall islands, for
rouloids and bulges. For the low islands with r0/h = 500,
with the selected scalings of PL and dGI/dV , the be-
havior of PL and dGI/dV is qualitatively and quantita-
tively pretty much identical for both morphologies. For
the taller islands, in contrast, with r0/h = 10, PL and

FIG. 4. Liquid volume fractions of the rouloid morphology
(Vm(rouloid)) and of the bulged morphology (Vm(bulge)) as
function of the shape, r0/h, and of the liquid volume fraction
in the total volume, Vl(= Vl/r

2
0π). Also depicted is the scaled

liquid volume fraction, Vinst, where the energy barrier between
the rouloid and the bulged morphology vanishes.

dGI/dV are significantly different. PL can reaching quite
high positive values at Tm(bulge). The maximum values
of PL of the tall islands are higher than those of the low
islands.

Fig. 4 presents as ordinate the shape of the cylinders,
r0/h, versus the scaled liquid volume fraction, Vl, as ab-
scissa. The curves in the plot show the scaled liquid
volume fractions at the de facto melting points of the
rouloid (Vm(rouloid)) and of the bulged morphologies
(Vm(bulge)). Also depicted is the scaled volume fraction
where an isochoric transition between both morphologies
is possible without energy barrier (Vinst)46.

Figures 3 and 4 reveal the various melting scenarios of
low (r0/h = 500) and tall (r0/h = 10) islands assuming
that the systems are in their energy minimum according
to Eq. (2). Fig. 3(a) shows that:

1.) For the rouloid morphology, for r0/h < ∞, in
the ideal continuum approach, dGI/dVl(rouloid) always
has an uphill and a downhill branch with a maximum
at Tm(rouloid). The downhill branch shows system
states that are absolutely unstable. The system will in-
stantaneously starts its complete melting process on a
rouloid pathway47. On the uphill branch the system is
metastable. There are always two isothermal Vl, with
the larger Vl on the unstable downhill section of the
dGI/dVl(rouloid)-curve.

2.) For the rouloid morphology there is always an ener-
getic barrier for an isothermal transition between uphill
and downhill states.

3.) For small Vl and well below T0, the system is always
in the rouloid configuration on the uphill branch of the
dGI/dVl(rouloid)-curve.

4.) dGI/dVl(bulge) always starts at a non-zero
lower limit volume. It starts with its maximum value
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(dGI/dVl(bulge))max i. e., at Tm(bulge). dGI/dVl(bulge)
always goes downhill. Therefore all bulged morphologies
are unstable in this melting scenario.

5.) For large r0/h, Tm(bulge) is lower than
Tm(rouloid). For small r0/h the melting point Tm(bulge)
does not exist. This is reflected in the behavior of the cor-
responding melting volumes, Vm(bulge) and Vm(rouloid),
as depicted in Fig. 4.

6.) There can be energetic barriers for the isothermal
transition between the rouloid and the bulged morphol-
ogy. This barrier disappears at Vinst corresponding to a
certain Tinst. For large r0/h, Vinst, is below Vm(rouloid),
for low r0/h, Vinst, is above Vm(rouloid).

If we ignore fluctuations that overcome energy barriers,
we obtain the following heating/melting scenarios. We
can heat the low island (r0/h = 500) up to Tinst. This
temperature is above the bulk melting point T0 and above
the melting point of the bulged morphology, Tm(bulge),
but below the melting point of the rouloid morphology,
Tm(rouloid). Upon heating to Tinst, the increasing liquid
fraction will retain a rouloid morphology. At Tinst this
rouloid morphology will become unstable and transform
isochorically into a bulged morphology. Then the sys-
tem will instantaneously start to melt completely. The
taller island with r0/h = 10 can be heated to Tm(rouloid),
which is in this case below T0. At Tm(rouloid) it will com-
mence to melt completely, starting on a rouloid pathway.

The red lines in Fig. 3(b) reveal the differences in the
Laplace pressures PL = PL ·h/γlv between the two islands
with r0/h = 10 and r0/h = 500 under isothermal con-
ditions. For instance, at a temperature corresponding
to dGI/dV = 0.06 is the scaled Laplace pressure much
higher for the tall island (PL ≈ 0.01) than for the low
island (Pl ≈ −0.04)48. At this temperature both is-
lands are metastable against complete melting. If two
islands of the same height h but different lateral size r0
are connected isothermally by a (precursor) film of mobile
molecules, this difference in PL will drive a liquid trans-
port from the smaller to the larger island and the larger
island will grow at the expense of the smaller one. Such
an Ostwald ripening process indeed has been reported for
a system with (cylindrical) islands of long-chain alkanes
at planar substrates49. It has to be noted that islands
of identical shape, r0/h, do have identical PL. However,
they do have different Laplace pressures PL, island with a
smaller h has the higher PL. Because PL is a function of
r0, h, γlv, cos Θlv, and other system parameters, ”larger”
islands do not necessarily have a lower PL than ”smaller”
islands.

B. Melting point shifts

Fig. 5 shows the solid volume fraction in the total ma-
terial volume, Vs = Vs/πr

2
0h, as function of the melt-

ing point shift multiplied by the island height, ∆T =
(Tm − T0) · h, for various island shapes, r0/h. The end-
points of the liquid/solid coexistence regimes of each

ΔTeq·h [K·nm]
-15 -10 -5 0

1.0

0.0

0.8

0.6

0.4

0.2

V
s

T0 Tm·h

instability 
region

Tm·h (rouloid)
r0/h=10

r0/h=500
r0/h=100
r0/h=20

r0/h=5

∞

FIG. 5. Melting scenarios of cylindrical islands on a planar
substrate with wetting conditions as in fig. 1(b). The data
result from simulations assuming the thermodynamic data of
islands of long-chain alkanes. The solid volume fraction Vs(=
Vs/πr

2
0) is plotted as function of the temperature shift ∆Teq

multiplied by the island height, h, for various island shapes,
r0/h. T0 is the bulk melting temperature. T∞m · h is the
melting temperature of a straight edge terrace of height h.

island shape denote the de facto melting temperature,
Tm(rouloid) multiplied by h. This corresponds to the
minimum possible solid volume fraction, Vs, in a rouloid
configuration of this island shape. One can see that
Tm(rouloid) (solid line) covers a temperature range from
below the bulk melting point (for the tall islands with
small r0/h) to above bulk melting (for the low islands
with large r0/h). The de facto melting point of the
largest possible island i.e., a straight terrace, is denoted
by T∞m . Morphological instabilities i. e., a temperature
range with Tm(bulge) < Tm(rouloid) with Tm(bulge) on
the metastable, uphill branch of dGI/dVl can only occur
for the low islands with the larger r0/h.

The thermodynamic data used for the simulations
shown in figures. 2 to 5 were taken from a real sys-
tem with islands/terraces of long-chain alkanes on pla-
nar silica substrates. For this real system, the melting
behavior of multilayer islands can be observed by on-line
optical microscopy for islands with a minimum radius
r0 = 500 nm (lower optical lateral resolution limit) and
heights up to 100 nm (the highest islands that can be
prepared with radii in the range of µm). According to
Fig. 5 for this shape with r0/h of 5 the maximum melting
point shift is ∼ −0.07K. This is just below the limit of
the experimental setup and indeed, no systematic melt-
ing point shifts as function of the island shape for shapes
as small as r0/h = 5 could be measured quantitatively50.
On the other hand, melting scenarios with rouloid and
bulged morphologies are observed experimentally with a
clear correlation between the morphologies and shape in
agreement with the theoretical predictions. In an earlier
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report, as experimental support for the theoretical anal-
ysis of the melting scenarios of straight edge terraces20

we already presented some experimental observations on
islands with rather large r0 i. e., similar to straight edge
terraces of infinite length. In the appendix we present
additional experimental data as support for the specific
melting behavior of cylinder islands analyzed in this re-
port.

IV. CONCLUSION AND SUMMARY

The melting behavior of small cylindrical aggregates
in a vapor environment has been analyzed in a contin-
uum approach. To ensure a solid cylindrical core with
a certain shape i.e., a certain ratio between height and
radius, specific wetting conditions were assumed: The
side wall is completely wetted by its melt while the top
plane is not wetted. The cylinder is deposited on a planar
substrate, which is wetted partially by the liquid melt.
Such a system resembles the real case of islands of long
chain alkanes on solid substrates. The system behavior
(liquid volume fraction, interface morphologies, melting
points, etc.) is analyzed assuming material conservation
(no evaporation), minimization of total energy (bulk and
interfaces), and mechanical equilibrium (isobaric condi-
tions in the liquid phase). It is found that depending
on the cylinder geometry and the wetting conditions liq-
uid and solid can coexist within a certain temperature
range. The system forms a solid cylindrical core sur-
rounded by liquid with an inner (solid/liquid) and outer
capillary (liquid/vapor) interface. The capillary inter-
face of the liquid can have a rouloid (axisymmetric) or a
bulged morphology (a bulge in isobaric coexistence with
a rouloid-like liquid section). Rouloid morphologies are
possible for the entire range of liquid volume fraction
and they are metastable at low liquid fractions (low tem-
peratures). At a certain volume fraction and above the
rouloid morphology is unstable. The system will melt
without energy barrier. The minimal unstable volume
fraction corresponds to the “de facto” melting tempera-
ture of the rouloid morphology. In contrast, bulged mor-
phologies are possible only beyond a certain threshold
value of the liquid volume fraction. Bulge morphologies
are always unstable in this melting scenario. Thus their
lower limit liquid volume fraction corresponds to their
“de facto” melting point. Below a certain ”instability”
liquid volume fraction there is an energetic barrier be-
tween isochoric rouloid and bulged morphologies. For
islands with a high ratio of radius to height this instabil-
ity volume fraction lies between the bulge melting point
and the higher rouloid melting point. Hence such islands
will start to melt completely by isochoric transformation
of a rouloid morphology into a bulged shape and then
follow a bulged melting pathway. This will occur at a
temperature above bulk melting. Islands with a small ra-
tio of radius to height will commence to melt completely
from a rouloid morphology already below the bulk melt-

ing temperature, because the melting point of the bulged
morphology has a larger liquid volume fraction than the
rouloid melting point. The calculations are in agreement
with experimental observations.
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VI. APPENDIX

A. 1.) The GT cylinder and the floating cylinder

For a floating cylinder eq. (6) reads as:

dGcylinder
I
dVl

= dGI(liquid)
dVl

− 2
h
γsv (A1)

and thus:

∆T cylinder
m = 1

Sm

[
(dGI(liquid)

dVl
)max −

2γsv

h

]
(A2)

For the special case of the GT approach (fig. 1(a)) all
energy contributions from the interfaces of the solid and
liquid with the substrates can be ignored (γs1 = γl1 and
γs2 = γl2). In addition, because of assumption 2.) the
liquid/vapour interface does not change during the phase
transition. Therefore eq. (6) reads as:

dGGT
I

dVl
= d

dVl
(γlsAls) = −γls

r
(A3)

Thus one recovers the well-known and widely applied
GT behaviour51(citations):

∆TGT
m = γls

Sm
· 1
r0

(A4)

In the literature this Gibbs-Thomson (GT) ap-
proach often appears in a somewhat more general
version4,8–12,52:

∆TGT
m (shape) = γls

Sm
· α
r0

(A5)

Eq. (A5) parametrises the shape by α, with α = 1 for
cylindrical and α = 2 for spherical geometries53). As
shown by Eq. (A4) this approach is only correct, if en-
ergy contributions from the cylinder base planes can be
neglected (fig. 1(a)). This is only the case for a few sim-
ple configurations, such as freely suspended spheres or
long cylinders18.
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a)

b)

FIG. A1. (a) Evolution of a rouloid liquid channel morphol-
ogy as observed for alkane islands (C36H74, r0 ≈ 50µm, h ≈
2.2µm, Θ ≈ 20◦) during a slight temperature increase. (b)
Simulated (top row) and observed (lower row) evolution of
a bulged liquid channel morphology as observed for alkane
islands under approximately isothermal conditions (Experi-
mental data: C36H74, r0 ≈ 18µm, h ≈ 1µm, Θ ≈ 20◦, Simu-
lation data: r0/h=20, Θ = 15◦,

The GT model extended to cases with anisotropic
solid/liquid interfacial energies (asymmetric Wulff poly-
hedra) leads to the Gibbs-Thomson-Herring (GTH)
approach18. The GTH approach may be applied to
(small) solid aggregates embedded in its infinite-size liq-
uid (melt) or infinite-size vapour phase. However, it is
not a reasonable description of small solid aggregates em-
bedded in a finite size melt. Both, the GT and the GTH
approach do not consider the impact of the capillary in-
terface.

B. 2.) Experimental data showing rouloid and bulge
morphologies

Fig. A1 shows experimental data on the melting sce-
nario of cylinder islands of long chain alkane islands.
Fig. A1(a) reveals how the rouloid volume increases
as the temperature is increasing slowly. Fig. A1(b)
shows how a rouloid morphology transforms (isother-
mally) into a bulged morphology while the liquid volume
fraction increases. The top row of the Figure shows the
simulation of the evolution of the surface morphology,
the lower row experimental observations for similar real
shapes/conditions. The simulation data are resized to
the experimental scales and the red lines in the exper-
imental data show the residual solid cylinder core from
the simulated data projected on the experimental obser-
vations.
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